Prof. Matthieu Bloch
Tuesday, September 26, 2023
A fixed-lenght \((n,M_n)\) code for a discrete memoryless source \(p_X\) consists of:
The rate of the code \(R\eqdef \frac{\log_2 M_n}{n}\) (bits/source symbol)
The average probability of error
\[\begin{align*} P_e^{(n)}(\calC) \eqdef \P{\widehat{X}^n\neq X^n} \eqdef \sum_{x^n\in\calX^n}P_X^{\otimes n}(x^n)\indic{g_n(f_n(x^n))\neq x^n}. \end{align*}\]
On average (over the random binning to create \(F\)), \[ \E[F]{P_e} \leq \P[P_{U}]{U\notin \calB_\gamma} + \frac{2^{\min(\gamma,\log_2\abs{\calU})}}{M}. \]
Approach 1: worst case analysis for \(\E{P_e}\leq \epsilon\)
\[ \log M = \log_2\card{\calU} + \log_2\frac{1}{\epsilon} \eqdef H_0(U) + \log_2\frac{1}{\epsilon} \]
Approach 2: smoothing
This offers partial answers to Question 1 if we substitute \(P_U\longleftarrow P_X^{\otimes n}\)
Approach 3: take the limit of \(n\) i.i.d. repetitions directly
\[ \lim_{n\to\infty} P_e^{(n)} = 0 \qquad\textsf{(exponentially fast in $n$)} \]
Approach 3.1: analyze smoothing directly \[ H_0^{\epsilon}(P_X^{\otimes n}) \geq n\H{X} + n\delta \qquad \text{ with } \epsilon = 2^{-\frac{n\delta^2}{2\log^2(\card{\calX}+3)}}. \]
Let \(\set{X_i}\) by i.i.d. random variables such that \(\E{X_i}=0\), \(\E{X_i^2}=\sigma^2<\infty\) and \(\E{\abs{X_i}^3}=\rho<\infty\). Define \[ Y_n = \frac{1}{n}\sum_{i=1}^nX_i \] and \(F_n\) the distribution of \(\frac{Y_n\sqrt{n}}{\sigma}\). There exists \(C\geq 0\) such that \[ \forall x\quad\forall n\quad\abs{F_n(x)-\Phi(x)}\leq \frac{C\rho}{\sigma^2\sqrt{n}} \] and \(\Phi\) is the CDF of the standard normal distribution.
A \((n,M_n)\) code for source coding a discrete memoryless source \(p_X\) with side information \(Y\) consists of:
The rate of the code \(R\eqdef \frac{\log_2 M_n}{n}\) (bits/source symbol)
The average probability of error
\[\begin{align*} P_e^{(n)}(\calC) \eqdef \P{\widehat{X}^n\neq X^n} \eqdef \sum_{(x^n,y^n)\in\calX^n\times\calY^n}P_{XY}^{\otimes n}(x^n,y^n)\indic{g_n(f_n(x^n),y^n)\neq x^n}. \end{align*}\]
For a discrete memoryless source \(P_{XY}\), \(C_{\textsf{source}} = \bbH(X|Y)\)
Consider a sequence of \((n,M_n)\) codes \(\set{(f_n,g_n)}_{n\geq1}\) such that \[ \lim_{n\to\infty}\frac{\log M_n}{n}\leq R \text{ and } \lim_{n\to\infty}P_e^{(n)}=0 \] Then \(R\geq \bbH(X|Y)\).
The achievability uses again random binning
Consider a source \(P_{UV}\), assume \(P_{U|V}(u,v)>0\) for all \((u,v)\) and set \(n=1\) for simplicity
Define the set \[ \calB_\gamma\eqdef\left\{(u,v)\in\calU\times\calV:\log\frac{1}{P_{U|V}(u|v)}\leq\gamma\right\}. \]
Encoding function \(f:\calU\to \set{1;M}\) created by assigning an index uniformly at random in \(\set{1;M}\) to each \(u\in\calU\)
Decoding function \(g:\intseq{1}{M}\times\calV:(m,v)\mapsto u^*\), where \(u^*=u\) if \(u\) is the unique sequence such that \((u,v)\in\calB_\gamma\) and \(f(u)=w\); otherwise, a random \(u\) is declared
On average (over the random binning to create \(F\)), \[ \E[C]{P_e} \leq \P[P_{U}]{U\notin \calB_\gamma} + \frac{2^{\min(\gamma,\log_2\abs{\calU})}}{M}. \]
A \((n,K_n)\) code \(\calC\) for privacy amplification coding a discrete memoryless source \(p_X\) against side information \(Z\) consists of an encoding function \(f_n:\calX^n\to\set{1;K_n}\).
The rate of the code \(R\eqdef \frac{\log_2 K_n}{n}\) (bits/source symbol)
The secrecy and uniformity of \(M\) measured as
\[\begin{align*} S^{(n)}(\calC) \eqdef \bbV(p_{MZ^n},q_Mp_Z^{\otimes n}) \end{align*}\]
where \(q_M\) is the uniform distribution on \(\set{1;K_n}\)
For a discrete memoryless source \(P_{XZ}\), \(C_{\textsf{pa}} = \bbH(X|Z)\)